The Functional co-operativity of Tissue-Nonspecific Alkaline Phosphatase (TNAP) and PHOSPHO1 during initiation of Skeletal Mineralization.
نویسندگان
چکیده
Phosphatases are recognised to have important functions in the initiation of skeletal mineralization. Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are indispensable for bone and cartilage mineralization but their functional relationship in the mineralization process remains unclear. In this study, we have used osteoblast and ex-vivo metatarsal cultures to obtain biochemical evidence for co-operativity and cross-talk between PHOSPHO1 and TNAP in the initiation of mineralization. Clones 14 and 24 of the MC3T3-E1 cell line were used in the initial studies. Clone 14 cells expressed high levels of PHOSPHO1 and low levels of TNAP and in the presence of β-glycerol phosphate (BGP) or phosphocholine (P-Cho) as substrates and they mineralized their matrix strongly. In contrast clone 24 cells expressed high levels of TNAP and low levels of PHOSPHO1 and mineralized their matrix poorly. Lentiviral Phospho1 overexpression in clone 24 cells resulted in higher PHOSPHO1 and TNAP protein expression and increased levels of matrix mineralization. To uncouple the roles of PHOSPHO1 and TNAP in promoting matrix mineralization we used PHOSPHO1 (MLS-0263839) and TNAP (MLS-0038949) specific inhibitors, which individually reduced mineralization levels of Phospho1 overexpressing C24 cells, whereas the simultaneous addition of both inhibitors essentially abolished matrix mineralization (85 %; P<0.001). Using metatarsals from E15 mice as a physiological ex vivo model of mineralization, the response to both TNAP and PHOSPHO1 inhibitors appeared to be substrate dependent. Nevertheless, in the presence of BGP, mineralization was reduced by the TNAP inhibitor alone and almost completely eliminated by the co-incubation of both inhibitors. These data suggest critical non-redundant roles for PHOSPHO1 and TNAP during the initiation of osteoblast and chondrocyte mineralization.
منابع مشابه
Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick.
PHOSPHO1 is a bone-specific phosphatase implicated in the initiation of inorganic phosphate generation for matrix mineralization. The control of mineralization is attributed to the actions of tissue-nonspecific alkaline phosphatase (TNAP). However, matrix vesicles (MVs) containing apatite crystals are present in patients with hypophosphatasia as well as TNAP null (Akp2(-/-)) mice. It is therefo...
متن کاملLoss of Skeletal Mineralization by the Simultaneous Ablation of PHOSPHO1 and Alkaline Phosphatase Function: A Unified Model of the Mechanisms of Initiation of Skeletal Calcification
Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Alkaline phosphatase (TNAP) plays a crucial role promoting mineralization of the extracellular matrix by restricting the concentration of the calcification inhibitor inorganic pyrophosphate (PP(i)). ...
متن کاملAblation of osteopontin improves the skeletal phenotype of phospho1(-/-) mice.
PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) have nonredundant functions during skeletal mineralization. Although TNAP deficiency (Alpl(-/-) mice) leads to hypophosphatasia, caused by accumulation of the mineralization inhibitor inorganic pyrophosphate (PPi ), comparably elevated levels of PPi in Phospho1(-/-) mice do not explain their stunted growth, spontaneous fractures, bowed...
متن کاملFunctional Significance of Calcium Binding to Tissue-Nonspecific Alkaline Phosphatase
The conserved active site of alkaline phosphatases (AP) contains catalytically important Zn2+ (M1 and M2) and Mg2+-sites (M3) and a fourth peripheral Ca2+ site (M4) of unknown significance. We have studied Ca2+ binding to M1-4 of tissue-nonspecific AP (TNAP), an enzyme crucial for skeletal mineralization, using recombinant TNAP and a series of M4 mutants. Ca2+ could substitute for Mg2+ at M3, w...
متن کاملLansoprazole is an uncompetitive inhibitor of tissue-nonspecific alkaline phosphatase.
Lansoprazole, a known H(+)/K(+)-ATPase inhibitor, is currently used as a therapeutical option for the initial treatment of gastroesophageal reflux disease. Recently, lansoprazole has been found to be an inhibitor of cytosolic PHOSPHO1 (a phosphatase which hydrolyses phosphocholine and phosphoethanolamine), providing a possible therapeutical target to cure pathological mineralization. Since PHOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry and biophysics reports
دوره 4 شماره
صفحات -
تاریخ انتشار 2015